Autonomous robot plays with NanoLEGO

3 years ago
Anonymous $UzyKJJH9oy

https://www.sciencedaily.com/releases/2020/09/200903105557.htm

Rapid prototyping, the fast and cost-effective production of prototypes or models -- better known as 3D printing -- has long since established itself as an important tool for industry. "If this concept could be transferred to the nanoscale to allow individual molecules to be specifically put together or separated again just like LEGO bricks, the possibilities would be almost endless, given that there are around 1060 conceivable types of molecule," explains Dr. Christian Wagner, head of the ERC working group on molecular manipulation at Forschungszentrum Jülich.

There is one problem, however. Although the scanning tunnelling microscope is a useful tool for shifting individual molecules back and forth, a special custom "recipe" is always required in order to guide the tip of the microscope to arrange molecules spatially in a targeted manner. This recipe can neither be calculated, nor deduced by intuition -- the mechanics on the nanoscale are simply too variable and complex. After all, the tip of the microscope is ultimately not a flexible gripper, but rather a rigid cone. The molecules merely adhere lightly to the microscope tip and can only be put in the right place through sophisticated movement patterns.